TRANSFORMATIONS

- Translations and dilations
- Combining transformations
- Curve Sketching
- Using graphs to solve equations and inequalities

Exercise 1D

Using graphs to solve equations and inequalities

Fundamentals

Fundamentals 1

The solutions to f(x) > 0 can be found by sketching y = and observing the x-coordinates where the curve is a _____ the ___-axis.

Fundamentals 2

- To solve a quadratic inequality in the form $ax^2 + bx + c \ge 0$ or $ax^2 + bx + c \le 0$, first sketch (a) the graph of $y = \underline{\hspace{1cm}}$.
- Then, depending on the direction of the inequality, shade the region that is either a ____ (b) or b____ the ___-axis.
- The set of ____-values that are shaded is the solution set. (c)

Fundamentals 3

The diagram below shows the sketch of y = (x - a)(x - b).

Write down the inequality that corresponds to

(a)
$$(x-a)(x-b) \ge 0$$

(b)
$$(x-a)(x-b) < 0$$

Fundamentals 4

- To find the intersection points of y = f(x) and y = g(x), we solve the two equations
- The solutions of f(x) = g(x) correspond to the ___-coordinates of where the two graphs (b)
- Hence, the number of solutions to f(x) g(x) = 0 can be found by instead sketching (c) $y = \underline{\hspace{1cm}}$ and $y = \underline{\hspace{1cm}}$, then counting how many times they intersect.

Question 1 The diagram below shows the graph of y = x + 2. Use your graph to solve the following.

(a)
$$x + 2 = 0$$

(b)
$$x + 2 < 0$$

(c)
$$x+2>0$$

Question 2 By drawing a sketch, or otherwise, solve the following inequalities.

(a)
$$2x - 4 \le 0$$

(b)
$$1 - 3x \ge 0$$

(c)
$$2 - \frac{1}{2}x < 0$$

(d)
$$\frac{2x}{3} + \frac{1}{2} > 0$$

Question 3 The graphs of y = -2x + 4 and $y = \pm 2$ are drawn below.

Use this diagram to write down the solution of $-2 \le 4 - 2x \le 2$.

Question 4 The diagram below shows the graph of a function y = f(x), and a horizontal line y = k. Find the value(s) of k such that f(x) = k has

- (a) one solution.
- (b) two solutions.
- (c) no solutions.

20 Chapter 1: Transformations

Question 5 The diagram below shows the graph of a function y = f(x). Find the value(s) of k such that f(x) = k has

- (a) one solution.
- (b) two solutions.
- (c) three solutions.

Question 6 The diagram below shows the graph of a function y = f(x). Find the value(s) of k such that f(x) = k has

- (a) one solution.
- (b) two solutions.
- (c) no solutions.

Question 7 The diagram below shows the graph of a function y = f(x). Find the value(s) of k such that f(x) = k has

- (a) one solution.
- (b) two solutions.
- (c) no solutions.

- (a) one solution.
- (b) two solutions.
- (c) no solutions.

Question 9 The diagram below shows the graph of a function y = f(x). Find the value(s) of k such that f(x) = k has

- (a) one solution.
- (b) two solutions.
- (c) no solutions.

Question 10

- (a) Sketch $y = x^2 4x + 5$, labelling the vertex.
- (b) Use your diagram to find the value(s) of k such that $x^2 4x + 5 k = 0$ has two solutions.
- (c) Verify your answer by finding the discriminant of $x^2 4x + (5 k) = 0$.

Question 11 The graph of y = f(x) is sketched below.

- For what values of k does the equation f(x) = k have (a)
 - (i) 1 solution?
- (ii) 2 solutions?
- (iii) 3 solutions?
- For what values of k does the equation 2f(x) = k have
 - 1 solution?
- (ii) 2 solutions?
- (iii) 3 solutions?
- For what values of k does the equation f(x+1) = k have
 - (i) 1 solution?
- (ii) 2 solutions?
- (iii) 3 solutions?

Question 12

- Sketch the graph of y = (x-2)(x+1), labelling the x-intercepts. You do not need to find the coordinates of the vertex.
- Hence, state the value(s) of x for which

(i)
$$(x-2)(x+1) = 0$$
.

(ii)
$$(x-2)(x+1) < 0$$
. (iii) $(x-2)(x+1) > 0$.

(iii)
$$(x-2)(x+1) > 0$$
.

Question 13 Use a similar technique to the above question to solve the following inequalities.

(a)
$$(x-3)(x+2) < 0$$

(b)
$$(x+4)(x-5) \ge 0$$

(c)
$$(2-x)(x+1) \le 0$$

(d)
$$(1-2x)(1+x) > 0$$

(e)
$$(x-2)(2x-4) \le 0$$

(f)
$$(-x-2)(x+2) > 0$$

Question 14 Solve the following inequalities by sketching an appropriate graph.

(a)
$$x^2 - 1 \ge 0$$

(b)
$$4 - x^2 > 0$$

(c)
$$x^2 - 5x + 4 < 0$$

(d)
$$6 - x - x^2 < 0$$

(e)
$$2x^2 + 7x + 5 < 0$$
 (f) $1 - x - 6x^2 \le 0$

(f)
$$1-x-6x^2 < 0$$

Question 15 [Trick questions]

Solve the following inequalities by sketching an appropriate graph.

(a)
$$x^2 + 1 > 0$$

(b)
$$x^2 + 4 < 0$$

(c)
$$r^2 < 0$$

(d)
$$x^2 + 2x + 2 > 0$$

(b)
$$x^2 + 4 < 0$$
 (c) $x^2 \le 0$
(e) $-x^2 + 2x - 2 \ge 0$ (f) $4x^2 - 4x + 1 \le 0$

(f)
$$4x^2 - 4x + 1 \le 0$$

The diagram below shows the graph of $y = x^2 - 4x$, y = 5 and y = 12. Question 16

- (a) Find the x-intercepts of the parabola, and the intersections with y=5 and y=12.
- Hence, use your diagram to solve the following inequalities. (b)

(i)
$$x^2 - 4x > 0$$

(ii)
$$x^2 - 4x \ge 12$$

(iii)
$$x^2 - 4x \le 5$$

(iv)
$$5 < x^2 - 4x < 12$$

Question 17 The diagram below shows the graph of $y = 4 - x^2$ and y = x + 2.

- Find where the two graphs intersect.
- (b) Hence, solve $4 x^2 > x + 2$.

The diagram below shows a sketch of $y = 2 - x^2$ and y = -x - 4. Question 18

- Find where the two graphs intersect. (a)
- Hence, solve $2 x^2 < -x 4$. (b)

Question 19 Draw appropriate graphs to solve the following quadratic inequalities.

(a)
$$(2-x)(x+4) < 0$$

(b)
$$x^2 - 3x + 2 \ge 0$$

(c)
$$x^2 < -2x$$

(d)
$$x^2 \le x + 6$$

(e)
$$12x - x^2 > 0$$

(e)
$$12x - x^2 \ge 0$$
 (f) $x^2 - 4 \ge -2x + 4$

Question 20

(a) Sketch the graph of
$$y = x^2 - 2x - 8$$

(b) Sketch the graph of
$$y = |x^2 - 2x - 8|$$
.

(c) Use your diagram to explain briefly why
$$|x^2 - 2x - 8| = k$$
 can never have exactly one solution, for any value of k .

(d) Hence, find the value(s) of k such that
$$|x^2 - 2x - 8| = k$$
 has

Question 21 Use graphing software to sketch the pairs of functions below, and hence state how many solutions there are to the equation f(x) = g(x).

(a)
$$f(x) = |x - 4|, g(x) = \frac{1}{2}x$$

(b)
$$f(x) = |x + 2| =, g(x) = -2x$$

(c)
$$f(x) = x^3 - x, g(x) = \cos x$$

(d)
$$f(x) = e^{-x^2}, g(x) = x^2$$

Question 22 By sketching y = LHS and y = RHS, state the number of solutions to the following equations.

(a)
$$x = 4 - x^2$$

(b)
$$1 - x^2 = x^2 - 4$$
 (c) $x = x^3 + 2$

(c)
$$r = r^3 + 2$$

(d)
$$x = \sqrt{x}$$

(e)
$$x^2 + 1 = \frac{1}{x}$$

(e)
$$x^2 + 1 = \frac{1}{x}$$
 (f) $1 - x^2 = 3 - 2x$

Question 23 State two appropriate curves that could be used to determine the number of solutions to the following equations.

(a)
$$x - \cos x = 0$$

(b)
$$x^2 - \ln x = 0$$

(b)
$$x^2 - \ln x = 0$$
 (c) $e^x - x - 2 = 0$

(d)
$$x - \sqrt{x} + 1 = 0$$

(e)
$$\ln x - 1 - x = 0$$

(e)
$$\ln x - 1 - x = 0$$
 (f) $1 - \frac{1}{x - 1} - x^2 = 0$

Question 24 Determine the number of solutions to the following equations, by drawing appropriate sketches.

(a)
$$e^x - 1 + x^2 = 0$$

(b)
$$e^x + \cos x - 2 = 0$$
 (c) $x^2 - \cos x - 1 = 0$

(c)
$$x^2 - \cos x - 1 = 0$$

Question 25 Determine the number of solutions to the following equations by drawing appropriate sketches.

(a)
$$x(x^2 - 1) = 1$$

(b)
$$(x-1)(x^2+1) = 1$$
 (c) $x^3 - x + 1 = 0$
(e) $x^3 - x^2 - 2 = 0$ (f) $x^4 - x + 1 = 0$

$$(c)$$
 $x^3 - x + 1 = 0$

(d)
$$x^3 + 2x - 3 = 0$$

(e)
$$r^3 - r^2 - 2 = 0$$

(f)
$$r^4 - r + 1 - 0$$

Question 27 [Finding the number of solutions of polynomial equations]

The diagram shows a sketch of $y=x^3$ and $y=\frac{1}{x-1}$ on the same set of axes.

- (a) How many solutions does $x^3 = \frac{1}{x-1}$ have?
- (b) How many solutions does $x^3(x-1) = 1$ have?
- (c) Hence, how many solutions does $x^4 x^3 1 = 0$ have?

Challenge Problems

Problem 1

- (a) Draw a sketch of $y = x^3$ and y = k x for when k > 0 and when k < 0.
- (b) Hence, show that if k > 0 then $x^3 + x k = 0$ has one positive solution, but if k < 0 then $x^3 + x k = 0$ has one negative solution.

Problem 2 Show that the equation $x^4 - kx - 1 = 0$ will always have two real solutions, and that there will always be one positive and one negative solution.

Problem 3 The equation $x^2 + \ln x = k$ has one real root $x = \alpha$ for all real values of k. Describe the behaviour of α for varying values of k.

Problem 4 Consider the equation $x^3 - kx + 1 = 0$.

- (a) Show that if the equation has only one real root, then the root must be negative.
- (b) Show that if the equation has a double root, then the double root will be positive.
- (c) Show that if the equation has three distinct real roots, then two must be positive and one must be negative.
- (d) As $k \to \infty$, one root approaches infinity and another approaches negative infinity. What happens to the third root?
- (e) Describe the behaviour of the real root as $k \to -\infty$.

Chapter 1 Review

Transformations

C Review

Question 1 In each of the following, f(x) was transformed a certain way for it to become g(x). Describe the transformation.

(a)
$$f(x) = \sqrt{x}, \ g(x) = \sqrt{x+1}$$

(b)
$$f(x) = \sqrt{x}, g(x) = \sqrt{x} + 2$$

(c)
$$f(x) = \ln(x+1), g(x) = \ln(2x+1)$$

(c)
$$f(x) = \ln(x+1)$$
, $g(x) = \ln(2x+1)$ (d) $f(x) = \frac{2}{x-1}$, $g(x) = \frac{1}{x-1}$

(e)
$$f(x) = \sin(x), \ g(x) = \sin\left(\frac{x}{2}\right)$$
 (f) $f(x) = e^x + 1, \ g(x) = e^x - 2$

(f)
$$f(x) = e^x + 1$$
, $g(x) = e^x - 2$

(g)
$$f(x) = (x+1)^2$$
, $g(x) = (x-3)^2$ (h) $f(x) = 4x^2 - 1$, $g(x) = x^2 - 1$

(h)
$$f(x) = 4x^2 - 1$$
, $g(x) = x^2 - 1$

Question 2 Write down the equation of the new curve when the following curves have been transformed in the following ways.

(a)
$$f(x) = (x-2)^3$$
, translate left 3 units.

(b)
$$f(x) = (x-2)^3$$
, translate right 2 units.

(c)
$$f(x) = 3x + 2$$
, translate left 3 units.

(d)
$$f(x) = 3x + 2$$
, translate right 4 units.

The diagram below shows the graph of y = f(x).

Describe the transformation and sketch the graph of the following.

(a)
$$y = 3f(3x)$$

(b)
$$y = \frac{1}{3}f\left(\frac{x}{3}\right)$$

$$(c) \quad y = \frac{1}{3}f(3x)$$

(d)
$$y = 3f\left(\frac{x}{3}\right)$$

Question 4 The diagram below shows the graph of $y = \cos x$ in the domain $x \in [-\pi, \pi]$. By applying the appropriate dilations, sketch the following graphs.

(a)
$$y = 2\cos(2x)$$

(b)
$$y = \frac{1}{2}\cos(2x)$$

(c)
$$y = 2\cos\left(\frac{x}{2}\right)$$

(d)
$$y = \frac{1}{2}\cos\left(\frac{x}{2}\right)$$

Question 5 Consider the graph of $y = \sqrt{x}$. Find the equation of the graph if $y = \sqrt{x}$ is

- (a) translated left by 2 units, then stretched horizontally by a factor of 3.
- (b) stretched horizontally by a factor of 3, then translated left by 2 units.
- (c) translated right by 1 unit, then squashed horizontally by a factor of 2.
- (d) squashed horizontally by a factor of 2, then translated right by 1 unit.

Question 6 The curve y = f(x) is translated and dilated, not necessarily in that particular order, to obtain the final curve y = f(ax + b). Find f(ax + b).

- (a) translated left by 1 unit, squashed horizontally by a factor of 2.
- (b) squashed horizontally by a factor of 2, translated left by 1 unit
- (c) translated right by 2 units, stretched horizontally by a factor of 3.
- (d) stretched horizontally by a factor of 3, translated right by 2 units,

Question 7 The curve y = f(x) is translated and reflected, not necessarily in that particular order, to obtain the final curve y = f(ax + b). Find f(ax + b).

- (a) translated right by 2 units, then reflected across the y-axis.
- (b) reflected across the y-axis, then translated right by 2 units.
- (c) translated left by 3 units, then reflected across the y-axis.
- (d) reflected across the y-axis, then translated left by 3 units.

29

Describe a suitable sequence of transformations that can turn f(x) into g(x) below. Question 8

(a)
$$f(x) = \sin(x), g(x) = \sin\left(2x + \frac{\pi}{3}\right)$$
 (b) $f(x) = \ln(x), g(x) = \ln(3x - 6)$

(b)
$$f(x) = \ln(x), g(x) = \ln(3x - 6)$$

(c)
$$f(x) = \sqrt{x}, \ g(x) = \sqrt{3-x}$$

(d)
$$f(x) = \tan(x), g(x) = \tan\left(\frac{\pi}{4} - x\right)$$

Describe a suitable sequence of transformations that can turn f(x) into g(x) below.

(a)
$$f(x) = \cos(x), \ g(x) = \cos\left(\frac{\pi}{3} - 2x\right)$$
 (b) $f(x) = \ln(x), \ g(x) = \ln\left(2 - \frac{x}{3}\right)$

(b)
$$f(x) = \ln(x), \ g(x) = \ln\left(2 - \frac{x}{3}\right)$$

Question 10 Let $f(x) = \frac{x-1}{x+1}$

- (a) Find any intercepts with the coordinate axes.
- (b) State the equation of the vertical and horizontal asymptote.
- (c) Describe the behaviour of the curve as $x \to \pm \infty$.
- (d) Determine whether the function is even, odd, or neither.
- (e) Hence, sketch the graph of y = f(x).

Question 11 Let $f(x) = \frac{x^2}{x^2 + 9}$.

- (a) Find any intercepts with the coordinate axes.
- (b) Find the equation of any horizontal or vertical asymptotes.
- (c) Describe the behaviour of the curve as $x \to \pm \infty$.
- (d) State where the curve is above and below the x-axis.
- (e) Determine whether the function is even, odd, or neither.
- (f) Hence, sketch the graph of y = f(x).

Question 12 Let $f(x) = \frac{x^2 + 1}{x^2 - 4}$.

- (a) Find any intercepts with the coordinate axes.
- (b) Find the equation of any horizontal or vertical asymptotes.
- Describe the behaviour of the curve as $x \to \pm \infty$. (c)
- (d) Determine whether the function is even, odd, or neither.
- Hence, sketch the graph of y = f(x). (e)

Question 13 Sketch the following, labelling all important features.

(a)
$$y = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}$$

(b)
$$y = \frac{e^x - 2}{e^x + 2}$$

Question 14 The diagram below shows the graph of a function y = f(x). Find the value(s) of k such that f(x) = k has

one solution. (a)

two solutions.

(c) three solutions.

four solutions. (d)

Question 15 Solve the following quadratic inequalities.

(a)
$$(x+3)(x-2) \ge 0$$

(b)
$$(2-3x)(x+4) > 0$$

(c)
$$x^2 + 9x + 20 < 0$$

(d)
$$6 + x - x^2 \ge 0$$

(a)
$$(x+3)(x-2) \ge 0$$
 (b) $(2-3x)(x+4) > 0$ (c) $x^2 + 9x + 20 \le 0$ (d) $6+x-x^2 \ge 0$ (e) $4x^2 + 12x - 7 > 0$ (f) $2+3x-9x^2 > 0$

(f)
$$2 + 3x - 9x^2 > 0$$

Question 16 Solve the following quadratic inequalities.

(a)
$$x^2 + 4x + 5 > 0$$

(b)
$$x^2 + 6x + 10 < 0$$

(b)
$$x^2 + 6x + 10 < 0$$
 (c) $4x^2 + 4x + 1 \le 0$

Question 17 By drawing an appropriate graph, solve the inequality $-5 \le x^2 - 6x \le 7$.

Question 18 The diagram below shows a sketch of $y = x^2 + 2x$ and y = 4 - x.

- Find where the two graphs intersect. (a)
- (b) Hence, solve $x^2 + 2x > 4 x$.

Question 19 Determine the number of solutions to the following equations by drawing appropriate sketches.

(a)
$$x^2 - \sin x = 0$$

(b)
$$2x - \sin x - 1 = 0$$
 (c) $e^x + x - 2 = 0$

(c)
$$e^x + x - 2 = 0$$

(d)
$$e^{-x} + x^2 - 2 = 0$$

(e)
$$x^2 - \ln x - 4 = 0$$
 (f) $\ln x + x + 4 = 0$

(f)
$$\ln x + x + 4 = 0$$

Question 20 Determine the number of solutions to the following equations by drawing appropriate sketches.

(a)
$$x^3 - x + 2 = 0$$

(b)
$$x^3 - x^2 - 1 = 0$$

(b)
$$x^3 - x^2 - 1 = 0$$
 (c) $x^4 - x^3 + x - 2 = 0$