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Exercise 1B

Direct Proof

Fundamentals

Fundamentals 1
Describe the general steps to prove that an integer n is

even.(a) odd.(b) divisible by a.(c)

Question 1 Prove that

if m and n are even, then mn is even.(a) if m and n are odd, then mn is odd.(b)

if m and n are even, then m+ n is even.(c) if m and n are odd, then m+ n is even.(d)

Question 2 Prove that

if n is even, then n2 is even.(a) if n is even, then n2 + 1 is odd.(b)

if n is odd, then n2 is odd.(c) if n is odd, then n2 + 1 is even.(d)

Question 3 Prove that if m is even and n is odd, then

m+ n is odd.(a) m− n is odd.(b)

Question 4

Prove that n2 + n is always even.(a)

Prove that n3 − n is divisible by 6.(b)

Prove that n2 is even if and only if n is even.(c)

Prove that n is divisible by 6 if and only if n is divisible by 2 and 3.(d)

Question 5 Let n be odd. Prove that n2 has a remainder of 1 when divided by 8.

Question 6 Prove that the sum of three consecutive integers is always divisible by 3.

Question 7 Prove that the sum of two consecutive positive powers of 4 is always a multiple of 20.

Question 8 Prove that n3 + n2

2 + n3

6 is an integer ∀n ∈ Z.

Question 9 Prove that every odd integer is the sum of two consecutive integers.
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Question 10 [Application of binomial expansions]

Prove that 9n − 1 is divisible by 8.

Question 11 Prove that the difference between the squares of any two consecutive odd integers is
always divisible by 8.

Question 12 Prove that if the sum of the digits of a 3-digit number is divisible by 3, then the
number itself is divisible by 3.

Question 13 Prove that every odd integer is the difference between two consecutive perfect squares.

Challenge Problems

Problem 1 [Modular arithmetic properties]

Prove that if a has a remainder of b when it is divided by n, then a2 and b2 will have the
same remainder when they are divided by n.

(a)

Prove that if a has a remainder of b when it is divided by n, then ac and bc will have the
same remainder when they are divided by n.

(b)

Problem 2 Prove that ∀n ∈ Z+, n ≥ 3, ∃ p prime such that n < p < n!

Problem 3 Prove that a number is divisible by 8 if and only if the last three digits themselves
form a number that is divisible by 8.

Problem 4 Let p be a prime number and let q be some positive integer. Find the smallest
value of q such that p+ q is never prime.

Problem 5 [Application of the Sophie Germain Identity]

Show that a4 + 4b4 = (a2 + 2ab+ 2b2)(a2 − 2ab+ 2b2).(a)
Hence, show that if n > 1, then n4 + 4n is composite.(b)

Problem 6 [Trivial proof]

Prove that no three positive integers a, b and c satisfy the equation

an + bn = cn

for any integer value of n ≥ 3.
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Exercise 1I

Inequalities using Integration

Fundamentals

Fundamentals 1
The diagram below shows a function f(x) and a number of upper and lower-bound rectangles.

x

y

a b

Let the total area of the upper and lower-bound rectangles be U and L respectively.

<

∫ b

a
f(x) dx <

Fundamentals 2
The diagram below shows some function f(x) ≥ g(x) for x ∈ [a, b].

x

y

f(x)

g(x)

a b

It follows that ∫ b

a
f(x) dx >

∫ ?

?
dx

Equality is lost because although the functions were equal to each other originally at the point
of intersections, their areas are often not equal and so their integrals are not necessarily equal.
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Question 1 The diagram below shows a section of the graph of y = 1
x
. Consider the region x ∈ [1, 2].

x

y

1 2

1

Use the diagram to prove that 1
2 < ln 2 < 1.

Question 2 The diagram below shows a section of the graph of y = 1
x
. Consider the region x ∈ [1, t].

x

y

1 t

1

Use the diagram to prove that

1− 1
t
≤ ln t ≤ 1

2

(
t− 1

t

)
.

Question 3 The diagram below shows a section of the graph of y = 1
x
. Consider the upper-bound

rectangle in the domain x ∈ [e, π].

x

y

e π

Use the diagram to show that eπ > πe.

MASTERING MATHEMATICS
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Question 4 The diagram below shows a section of the graph of y = 1
t
.

t

y

n n+ x

Consider the region t ∈ [n, n+ x], where x > n.

Prove that x

1 + x
n

< n ln
(

1 + x

n

)
< x.(a) Hence, show that lim

n→∞

(
1 + x

n

)n
= ex.(b)

Question 5 [Harmonic Series]

The diagram below shows the graph of y = 1
x
. Upper and lower-bound rectangles of unit width are

constructed over the domain x ∈ [1, n].

x

y

1 2 3
· · ·

n− 1 n

Define the series Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n
.

Show that
1
n

+ lnn < Hn < 1 + lnn.

(a)

Hence, find two integers which are lower and upper bounds of the following sum.

1 + 1
2 + 1

3 + · · ·+ 1
2020

(b)

Does the series

1 + 1
2 + 1

3 + 1
4 + 1

5 + · · ·

have a finite limit?

(c)
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Exercise 2G
Applications of de Moivre’s Theorem

Fundamentals

Fundamentals 1
Let α, β and γ be the roots of ax3 + bx2 + cx+ d = 0. Write the following in terms of a, b, c, d.

α + β + γ(a) αβ + βγ + αγ(b) αβγ(c)

Fundamentals 2
To express cos(nθ) as a polynomial in terms of cos θ, follow the following steps.

Define z = + i .(a)

Simplify zn using theorem.(b)

Expand zn manually using P triangle, or using the b expansion.(c)

Equate the real/imaginary (circle one) components of the two expressions for zn.(d)

Turn all even powers of sin θ into powers of using the identity .(e)

Fundamentals 3
To express tan(nθ) as a rational expression in terms of tan θ, follow the following steps.

Obtain expressions for cosnθ and using the same steps outlined above. Keep the
expressions as they are after equating real/imaginary components and do not modify them.

(a)

D the two expressions to obtain tannθ in terms of powers of cos θ and sin θ.(b)

Divide the top and bottom by the highest power cosine/sine (circle one) term.(c)

Simplify and express everything in terms of(d)

Question 1 Let z = cos θ + i sin θ. Prove the following trigonometric identities.
cos 3θ = cos3 θ − 3 sin2 θ cos θ(a) sin 3θ = 3 sin θ cos2 θ − sin3 θ(b)

tan 3θ = 3 tan θ − tan3 θ

1− 3 tan2 θ
(c) cot 3θ = 3 cot2 θ − 1

cot3 θ − 3 cot θ
(d)

Question 2 Let z = cos θ + i sin θ. Prove the following trigonometric identities.
cos 3θ = 4 cos3 θ − 3 cos θ(a) sin 3θ = 3 sin θ − 4 sin3 θ(b)

Question 3 Let z = cos θ + i sin θ. Prove the following trigonometric identities.
cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ(a) sin 4θ = 4 sin θ cos3 θ − 4 sin3 θ cos θ(b)

tan 4θ = 4 tan θ − 4 tan3 θ

1− 6 tan2 θ + tan4 θ
(c) cot 4θ = 4 cot3 θ − 4 cot θ

cot4 θ − 6 cot2 θ + 1
(d)
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Question 4 Let z = cos θ + i sin θ. Prove the following trigonometric identities.

cos 5θ = cos5 θ − 10 sin2 θ cos3 θ + 5 sin4 θ cos θ(a)

sin 5θ = sin5 θ + 5 sin θ cos4 θ − 10 sin3 θ cos2 θ(b)

Question 5 Let z = cos θ + i sin θ. Prove the following trigonometric identities.

cos 6θ = cos6 θ − 15 cos4 θ sin2 θ + 15 cos2 θ sin4 θ − sin6 θ(a)

sin 6θ = 6 sin θ cos5 θ − 20 sin3 x cos3 θ + 6 sin5 θ cos θ(b)

Question 6 Let z = cos θ + i sin θ.

Show that zn + z−n = 2 cosnθ for n ∈ Z+.(a)

Hence, show that cos5 θ = 1
16
(
cos 5θ + 5 cos 3θ + 10 cos θ

)
.(b)

Calculate
∫ π

2

0
cos5 θ dθ.(c)

Question 7

Use a similar technique to the previous question to prove that

cos4 θ = 1
8
(
cos 4θ + 4 cos 2θ + 3

)
.

(a)

By finding a suitable substitution for θ, deduce that

sin4 θ = 1
8
(
cos 4θ − 4 cos 2θ + 3

)
.

(b)

Hence, show that cos4 θ + sin4 θ = 1
4
(
cos 4θ + 3

)
.(c)

Question 8

Show that

cos6 θ = 1
32
(
10 + 15 cos 2θ + 6 cos 4θ + cos 6θ

)
.

(a)

Find a similar result for sin6 θ.(b)

Question 9 Let z = cos θ + i sin θ.

Show that zn + z−n = 2 cosnθ.(a) Hence, solve z4 + 4z3 + 2z2 + 4z + 1 = 0.(b)

MASTERING MATHEMATICS
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Question 10 [Guided question for a classic problem]

Define the following cubic polynomial.

P (x) = 8x3 − 6x− 1

You may assume that cos 3θ = 4 cos3 θ − 3 cos θ.

Let x = cos θ. Show that solving P (x) = 0 is equivalent to solving cos 3θ = 1
2.(a)

Solve the trigonometric equation to find 3 distinct values of θ.(b)

Hence, write down the three zeroes of P (x).(c)

Find the exact value of

cos
(
π

9

)
+ cos

(5π
9

)
+ cos

(7π
9

)
.

(d)

Find the exact value of

cos
(
π

9

)
cos

(5π
9

)
+ cos

(
π

9

)
cos

(7π
9

)
+ cos

(5π
9

)
cos

(7π
9

)
.

(e)

Find the exact value of

cos
(
π

9

)
cos

(5π
9

)
cos

(7π
9

)
.

(f)

Question 11 You may assume that cos 3θ = 4 cos3 θ − 3 cos θ.

Find the zeroes of P (x) = 8x3 − 6x+ 1.(a)

Show that

cos
(2π

9

)
+ cos

(4π
9

)
= cos

(
π

9

)
.

(b)

Find the exact value of

cos
(
π

9

)
cos

(2π
9

)
cos

(4π
9

)
.

(c)

Question 12

Show that cos 4θ = 8 cos4 θ − 8 cos2 θ + 1.(a)

Hence, solve 8x4 − 8x2 + 1 = 0.(b)

Hence, find the exact values of cos
(
π

8

)
and cos

(5π
8

)
.(c)
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Question 13 You may assume that tan 3θ = 3 tan θ − tan3 θ

1− 3 tan2 θ
.

Solve the polynomial equation t3 − 3t2 − 3t+ 1 = 0.(a)

Find the exact value of tan
(
π

12

)
and tan

(5π
12

)
.(b)

Question 14

Prove that cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.(a)

Hence, solve the polynomial equation 16x4 − 20x2 + 5 = 0.(b)

Hence, show that

cos
(
π

10

)
= 1

2

√
5 +
√

5
2 .

(c)

Write down the exact value of cos
(3π

10

)
.(d)

Question 15

Prove that sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ.(a)

Show that x = sin
(
π

10

)
is a solution to the polynomial equation 16x5 − 20x3 + 5x− 1 = 0.(b)

Find the polynomial P (x) such that (x− 1)P (x) = 16x5 − 20x3 + 5x− 1.(c)

Find the value of a such that P (x) = (4x2 + ax− 1)2.(d)

Hence, find an exact value for sin
(
π

10

)
.(e)

Question 16

Show that cos 6θ = 32 cos6 θ − 48 cos4 θ + 18 cos2 θ − 1.(a)

Hence, find all the roots of the polynomial 32x6 − 48x4 + 18x2 − 1 = 0.(b)

Show that

cos
(
π

12

)
cos

(5π
12

)
= 1

4 .

(c)

Find the exact value of

cos2
(
π

12

)
+ cos2

(5π
12

)
.

(d)

Hence, show that

cos
(
π

12

)
+ cos

(5π
12

)
=
√

6
2 .

(e)
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Question 17

Show that

cot 6θ = 1− 15 tan2 θ + 15 tan4 θ − tan6 θ

6 tan θ − 20 tan3 θ + 6 tan5 θ
.

(a)

Find the exact value of tan
(
π

12

)
tan

(5π
12

)
.(b)

Find the exact value of tan2
(
π

12

)
+ tan2

(5π
12

)
.(c)

Hence, find tan
(
π

12

)
+ tan

(5π
12

)
.(d)

Write down the equation of the quadratic polynomial that has roots tan
(
π

12

)
and tan

(5π
12

)
.(e)

Hence, find the exact value of tan
(
π

12

)
and tan

(5π
12

)
.(f)

Question 18

Prove that

tan 5θ = tan5 θ − 10 tan3 θ + 5 tan θ
5 tan4 θ − 10 tan2 θ + 1

.

(a)

Hence, find the roots of the polynomial t4 − 10t2 + 5 = 0.(b)

Show that tan
(
π

5

)
tan

(2π
5

)
=
√

5.(c)

Show that tan
(
π

5

)
+ tan

(2π
5

)
=
√

10 + 2
√

5.(d)

Hence, prove that tan
(
π

5

)
=
√

5− 2
√

5.(e)

Find the exact value of tan
(2π

5

)
and justify your answer.(f)
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Challenge Problems

Problem 1 Show that if −1 < r < 1, then

1 + r cos θ + r2 cos 2θ + r3 cos 3θ + · · · = 1− r cos θ
1− 2r cos θ + r2 .

Problem 2 Let z = cos θ + i sin θ.

Show that zk + z−k = 2 cos kθ, where k ∈ Z+.(a)
Let n ∈ Z+. Prove the following identity.

(
2 cos θ

)2n = 2
n∑
k=0

(
2n
k

)
cos(2n− 2k)θ.

(b)

Hence, prove that ∫ π
2

0
cos2n θ dθ = π

22n+1

(
2n
n

)
.

(c)

Problem 3 Let z = cos θ + i sin θ.

Simplify
(
z + 1

z

)n
zn.(a)

Show that

2n cosn θ cos(nθ) =
n∑
k=0

(
n

k

)
cos(2kθ).

(b)

Hence, show that ∫ π

−π
cosn θ cosnθ dθ = π

2n−1 .

(c)
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Question 12 [Equation of a plane]

A plane in 3D space can be defined by a point on the plane and a vector perpendicular to the plane
called the normal vector. This works similarly to how a line in 2D space can be defined by a point on
the line and a gradient.

x y

z

n˜

r˜0

r˜

The diagram above shows two vectors r˜ and r˜0 representing the position vectors of points P (x, y, z)

and P0(x0, y0, z0) on a plane. Let n˜ =

ab
c

 be the vector perpendicular to the plane.

Explain why
(r˜− r˜0) · n˜ = 0.

(a)

Hence, show that the equation of the plane is

ax+ by + cz = ax0 + by0 + cz0.

(b)

Find the equation of the plane that passes through (2,−3, 1) and is perpendicular to the vector
−3 i˜+ 2 j˜ − k˜ .

(c)

What is the shortest possible distance between any point on the plane ax+ by+ cz + d = 0 and
the origin?

(d)
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Question 15 The diagrams below show sketches of eight parametrically defined curves.

x
y

z
(i)

x y

z
(ii)

1
−1

1

5

10

x

y

z
(iii)

1

x
y

z
(iv)

x y

z
(v)

5
1

10

x

y

z
(vi)

10 10

10

x
y

z
(vii)

1
−1

1

1

x

y

z
(viii)

Match the curves to the appropriate set of parametrisations below.

r˜(t) = (cos t) i˜+ (sin t) j˜ + (e−0.5t) k˜(a) r˜(t) = (t cos 5t) i˜+ (t sin 5t) j˜ + (t) k˜(b)

r˜(t) = (t) i˜+ (t2) j˜ + (t3) k˜(c) r˜(t) = (cos t) i˜+ (sin t) j˜ + (cos 2t) k˜(d)

r˜(t) = cos(t) i˜+ sin(t) j˜ + (ln t) k˜(e) r˜(t) = (et) i˜+ (t) j˜ + (t2) k˜(f)

r˜(t) = (t) i˜+ (cos 6t) j˜ + (sin 6t) k˜(g) r˜(t) = (cos t) i˜+ (sin t) j˜ + (sin 5t) k˜(h)



130 Chapter 3: 3D Vectors

Question 16 [Guided question to find the intersection of two surfaces]

The diagram below shows a parabolic cylinder z = x2 − y and a plane z = y − 1.

x
y

z

Solve the surfaces simultaneously to show that y = 1
2
(
x2 + 1

)
. What is the geometric significance

of this result?
(a)

Set x = t for some t ∈ R and hence show that the intersection of the two surfaces has parametric
representation

r˜(t) = (t) i˜+ 1
2
(
t2 + 1

)
j˜ + 1

2
(
t2 − 1

)
k˜ .

(b)

For the k˜-component above, the surface z = y − 1 was used. Is it incorrect to instead use the
other surface z = x2 − y?

(c)

Suppose that the condition z ≤ 4 were introduced. Find a corresponding restriction for t and
hence find the endpoints of the curve of intersection.

(d)
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Exercise 4G

Integration by Parts

Fundamentals

Fundamentals 1
Complete the following formula for integration by parts.∫

uv′ dx =

Fundamentals 2
Complete the following formula for integration by parts.∫ b

a
uv′ dx =

Fundamentals 3

When integrating an isolated function using integration by parts, it is often fruitful to set
v′ = to introduce an x term.

(a)

When selecting what goes into the v′ term, it is important to ensure that it will be easy to
i .

(b)

Question 1 Find the following using integration by parts.∫
xex dx(a)

∫
x ln x dx(b)

∫ √
x ln x dx(c)∫

x sin x dx(d)
∫
x sec2 x dx(e)

∫
x sin−1 (x) dx(f)∫

x tan−1 (x) dx(g)
∫ ln x

x2 dx(h)
∫
x sin x cosx dx(i)

Question 2 [Integrating isolated functions]

Find the following.∫
ln x dx(a)

∫
sin−1 (x) dx(b)

∫
tan−1 (x) dx(c)∫

ln(x2 + 1) dx(d)
∫
e
√
x dx(e)

∫
sin (ln x) dx(f)

Question 3 [Two applications of integration by parts needed]

Find the following.∫
ex sin x dx(a)

∫
x2 sin x dx(b)

∫
(ln x)2 dx(c)
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Question 4 [Prioritising the v′ term]

Find the following.∫
x5
√

1 + x3 dx(a)
∫

x7
√

1 + x4
dx(b)

∫
x3 cos

(
x2
)
dx(c)∫

x3ex
2
dx(d)

∫
e6x sin

(
e3x
)
dx(e)

∫
x3
√

1− x2 dx(f)

Question 5 Find
∫

sec3 x dx using integration by parts.

Question 6 [Definite integrals using integration by parts]

Evaluate the following.∫ π
2

0
x cosx dx(a)

∫ e

1
x ln x dx(b)

∫ 1

0
tan−1 (x) dx(c)

∫ π
2

0
e−x cosx dx(d)

∫ π
4

0
x tan2 x dx(e)

∫ 1

0
x3 tan−1 (x) dx(f)

∫ ∞
0

xe−x dx(g)
∫ 1

0
x3e−x

2
dx(h)

∫ ∞
0

ln(1 + ex)
ex

dx(i)

Challenge Problems

Problem 1 Find the following.∫ √4− x2

x2 dx(a)
∫ √

1− x2 dx(b)
∫ ln x

(1 + ln x)2 dx(c)

∫
ln
(
x+

√
x2 − a2

)
dx(d)

∫ sin−1 x√
1 + x

dx(e)
∫ tan−1√x√

1 + x
dx(f)

Problem 2 [Application to the Laplace transform]

The Laplace transform is an advanced technique used to solve differential equations, usually
taught in universities. It is an operation on f(t) defined as

L
(
f(t)

)
=
∫ ∞

0
e−stf(t) dt.

The output is a function in terms of s.

Show that L
(
t
)

= 1
s2 .(a) Show that L

(
cos at

)
= s

s2 + a2 .(b)
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Question 7 A particle is launched from the base O of a plane inclined at an angle of α from the
horizontal plane.

x

y

V

d

θ
α

O

Initially, the particle has a speed of V m s−1 and an angle of inclination of θ. You may assume the
standard equations of motion in terms of time.

Show that the equation of the trajectory is y = x tan θ − gx2

2V 2 sec2 θ.(a)

Show that when the particle hits the ramp, it has travelled a horizontal distance of

d = 2V 2 cos θ sin(θ − α)
g cosα .

(b)

Hence, show that the range of the particle up the inclined plane is

R = 2V 2 cos θ sin(θ − α)
g cos2 α

.

(c)

Prove that the range R up the ramp is maximised when the angle of projection is halfway
between the vertical and the angle of the plane.

(d)

Let T be the time of flight when this occurs. Show that R = 1
2gT

2.(e)

Question 8 A particle is projected from the origin with initial speed V m s−1 and initial angle θ.
The particle passes through the point P (p, q), and has a horizontal range of R.

Show that
tan θ = qR

p(R− p) .

MASTERING MATHEMATICS



5G Inclined Planes and Pulleys 219

Question 6 [Generalised double smooth ramp problem]

Two objects A and B with masses of m1kg and m2kg respectively are connected by a light inextensible
string that runs through a smooth pulley. The objects lean on a double-sided smooth ramp inclined
at angles of α and β from the horizontal, as shown below.

A

B

α
β

The system moves so that particle A slides down the ramp whilst particle B slides up the ramp.

Show that

a = g

(
m1 sinα−m2 sin β

m1 +m2

)
.

(a)

Hence, show that

T = g

(
m1m2
m1 +m2

)
(sinα+ sin β).

(b)

Show that if
sinα
sin β = m2

m1
,

then the system will remain at static equilibrium.

(c)
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Question 9 The following diagram shows two objects with masses of m kg and 3m kg on either end
of a light inextensible string that passes through a smooth pulley. Both particles are released from
rest simultaneously.

3mm

Let a be the acceleration of the heavier particle in the downwards direction. Let g be the acceleration
due to gravity.

Show that a = g

2.(a)

Hence, show that after 4 seconds, the heavier object travels 4g metres and has speed 2gm s−1.(b)

Question 10 [Minimal force problem on a flat surface]

An object of mass m rests on the surface of a table. It is attached to a rope inclined at an angle of θ
from the horizontal that pulls it to the right.

θ

The object experiences a friction force F = µN that resists the motion of the object.

Resolve forces in the vertical and horizontal directions.(a)

Hence, show that the amount of tension needed to overcome friction is

T = µmg

cos θ + µ sin θ .

(b)
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