FURTHER FUNCTIONS

- Reciprocal and square root graphs
- Further reflections
- Adding graphs
- Multiplying graphs
- Inequalities
- Inverse functions
- Parametric forms
- Review Chapter 1
- Investigation Task
- Investigation Task

Exercise 1A

Reciprocal and square root graphs

Fundamentals

Fundamentals 1

Let P(a,b) be a point on y=f(x).

- (a) The image of P under the transformation $y = \frac{1}{f(x)}$ is _____
- (b) The image of P under the transformation $y = \sqrt{f(x)}$ is _____

Fundamentals 2

- (a) As f(x) increases, the graph of $\frac{1}{f(x)}$ increases/decreases (circle one).
- (b) As f(x) decreases, the graph of $\frac{1}{f(x)}$ increases/decreases (circle one).
- (c) As $f(x) \to 0^+$, the graph of $\frac{1}{f(x)} \to ---$.
- (d) As $f(x) \to 0^-$, the graph of $\frac{1}{f(x)} \to \underline{\hspace{1cm}}$.
- (e) As $f(x) \to \infty$, the graph of $\frac{1}{f(x)} \to \underline{\hspace{1cm}}$.
- (f) As $f(x) \to -\infty$, the graph of $\frac{1}{f(x)} \to \underline{\hspace{1cm}}$.
- (g) All x-intercepts from y = f(x) become v ____ a ___ on $y = \frac{1}{f(x)}$.

Fundamentals 3

Consider the equation of $y = \sqrt{f(x)}$.

- (a) What happens if f(x) < 0?
- (b) If 0 < f(x) < 1, then $y = \sqrt{f(x)}$ is higher/lower (circle one) than y = f(x).
- (c) If f(x) > 1, then $y = \sqrt{f(x)}$ is higher/lower (circle one) than y = f(x).
- (d) If f(x) has a zero at $x = \alpha$, then $y = \sqrt{f(x)}$ also has a zero at $x = \alpha$. However, there will be a v_____ tangent at $x = \alpha$, provided that $f'(\alpha) \neq 0$.

Fundamentals 4

Explain the difference between the graphs of $y = \sqrt{f(x)}$ and $y^2 = f(x)$.

Question 1 The diagram below shows the graph of y = f(x).

The following diagrams show the graphs of $y = \sqrt{f(x)}$, $y = \frac{1}{f(x)}$ and $y^2 = f(x)$ in a random order. Write down the transformation that matches each of the diagrams.

(a)

(b)

(c)

The diagram below shows the graph of y = f(x). Question 2

The following diagrams show the graphs of $y = \sqrt{f(x)}$, $y = \frac{1}{f(x)}$ and $y^2 = f(x)$ in a random order. Write down the transformation that matches each of the diagrams.

6 Chapter 1: Further Functions

(a)

(b)

(c)

Question 3

(a) Draw the graph of $y = x^2 - 2x$, labelling all important features.

(b) Hence, draw a sketch of $y = \sqrt{x^2 - 2x}$ on the same set of axes.

Question 4 Use a similar technique to sketch the graph of the following.

(a)
$$y = \sqrt{2x - 1}$$

(b)
$$y = \frac{1}{\sqrt{x}}$$

$$(c) \quad y = \sqrt{x^3 - 4x}$$

(d)
$$y = \sqrt{x^3 + 1}$$

(e)
$$y = \sqrt{2 + x - x^2}$$

(f)
$$y = \sqrt{4 + 2^{-x}}$$

Question 5 By first drawing y = f(x), sketch the following graphs of $y^2 = f(x)$.

(a)
$$y^2 = x + 2$$

(b)
$$y^2 = x^2 - 4$$

(c)
$$y^2 = 2^x - 1$$

Question 6

(a) Draw the graph of $y = 4x - x^2$, labelling all important features.

(b) Hence, draw a sketch of $y = \frac{1}{4x - x^2}$ on the same set of axes.

Question 7 Use a similar technique to sketch the graph of the following. Draw the 'original' graph as a dashed curve, and draw the final answer on the same set of axes.

$$(a) \quad y = \frac{1}{2x - 1}$$

(b)
$$y = \frac{1}{\sqrt{x}}$$

$$(c) \quad y = \frac{1}{x^2}$$

(d)
$$y = \frac{1}{x^2 + x - 2}$$

(e)
$$y = \frac{1}{x^3 + 1}$$

$$(f) \quad y = \frac{1}{1 + 2^x}$$

Question 8

(a) Sketch the graph of $y = x^3$.

(b) Hence, sketch the graph of the following.

(i)
$$y = \sqrt{x^3}$$

(ii)
$$y^2 = x^3$$

(iii)
$$y = \frac{1}{x^3}$$

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

(c)
$$y^2 = f(x)$$

Question 10 The diagram below shows the graph of y = f(x).

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

(c)
$$y^2 = f(x)$$

Question 11 The diagram below shows the graph of y = f(x).

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

(c)
$$y^2 = f(x)$$

8 Chapter 1: Further Functions

Question 12 The diagram below shows the graph of y = f(x).

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

$$(c) \quad y^2 = f(x)$$

Question 13 The diagram below shows the graph of y = f(x).

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

$$(c) y^2 = f(x)$$

Question 14 The diagram below shows the graph of y = f(x).

On separate axes, sketch the graph of

(a)
$$y = \frac{1}{f(x)}$$

(b)
$$y = \sqrt{f(x)}$$

$$(c) y^2 = f(x)$$

Challenge Problems

Sketch the following. Problem 1

(a)
$$y = \frac{1}{\sqrt{x^2 - 1}}$$

(b)
$$y = \frac{1}{\sqrt{1-x^2}}$$

Sketch the graph of $y = \frac{2^x}{1 + 2^x}$.

Hint: Divide the top and bottom by 2^x

[Kampyle of Eudoxus] Problem 3

- Sketch the graph of $y = x^4 x^2$.
- Hence, sketch the graph of $y^2 = x^4 x^2$, which is called the Kampyle of Eudoxus named after the ancient Greek astronomer and mathematician Eudoxus of Cnidus (408 BC – 347
- Use graphing software to sketch $y^2 = x^4 x^2$ and $y = x^2$ on the same set of axes. State what you observe.
- Prove your observation. (d)

Problem 4 [Lemniscate]

Sketch the graph of $y^2 = x^2 - x^4$.

Problem 5 [Calculus required]

Prove the following statements about the reciprocal and square root graphs.

- If f(x) has a root at $x = \alpha$, and $f'(\alpha) \neq 0$, then $y = \sqrt{f(\alpha)}$ has a vertical tangent at $x = \alpha$.
- If f(x) has a stationary point at $x = \alpha$, then $y = \frac{1}{f(x)}$ also has a stationary point at $x = \alpha$.
- If f(x) has a turning point at $x = \alpha$, then $y = \frac{1}{f(x)}$ also has a turning point at $x = \alpha$, but with opposite concavity.

Exercise 1G

Parametric forms

Fundamentals

Fundamentals 1

- (a) A C _____ equation is an equation relating two variables x and y.
- (b) These variables can be expressed as functions of a third variable called a p_____.
- (c) This p _____ can be used to study the ___ or ___-coordinates individually, rather than studying them together all the time.
- (d) Every point on the curve is now defined by only o ____ number, which is the value of the p _____.
- (e) For a given Cartesian equation, the parametrisation is/is not (circle one) unique. In other words, a given Cartesian equation may/may not (circle one) have many parametric equations to represent it.

Fundamentals 2

- (a) To obtain the C_____ equation from the parametric equation, we need to e_____ the parameter.
- (b) This can often be done for most problems either by making the parameter the subject from one equation first and then s_____ into the other, or by using a t_____ identity.

Fundamentals 3

- (a) The usual parametrisation for the circle $x^2 + y^2 =$ __ is $x = r \cos \theta$ and y =____.
- (b) It relies on the trigonometric identity ______.
- (c) If the circle is centred at (a,b), then a parametrisation is x=a+ _____ and y= ____ + $r\sin\theta$.

Question 1 Consider the curve defined parametrically by x = t - 1 and y = t + 1

(a) Complete the following table.

t	-2	-1	0	1	2
\boldsymbol{x}					
\boldsymbol{y}					

- (b) Eliminate the parameter and hence find the Cartesian equation.
- (c) What value of t yields the coordinate (4,6)?
- (d) Sketch the graph and plot the points corresponding to t = 0, 1, 2 on it.

Complete the following table.

t	-2	-1	0	1	2
\boldsymbol{x}					
\boldsymbol{y}					

- (b) Eliminate the parameter and hence find the Cartesian equation.
- (c) What value of t yields the coordinate (6,4)?
- (d) Sketch the graph and plot the points corresponding to t = 0, 1, 2 on it.
- Let T be the point on the parabola with parameter t. As t varies, the position of T will also vary. Describe what happens to T as $t \to \pm \infty$.

Question 3 For each of the following, eliminate the parameter and hence state the Cartesian equation.

- (a) x = 2t
 - y = 3t
- (b) x = 3 + ty = 2t

x = 2 - 3t

(d) x = 4t $y = 16t^2$ (e) x = 3t $y = 6t^2$

x = t - 3

Question 4 For each of the following, show that the Cartesian equation is a circle and state the centre and radius.

(a) $x = \cos \theta$

 $y = \sin \theta$

- $x = 2\cos\theta$
 - $y = 2\sin\theta$

(c) $x = -1 + \cos \theta$

 $y = 2 - \sin \theta$

 $x = 4 + 3\cos\theta$

 $y = -5 + 3\sin\theta$

Question 5 For each of the following circles, write down a suitable parametric equation.

- (a) $x^2 + y^2 = 16$
- (b) $(x-2)^2 + (y+5)^2 = 9$ (c) $x^2 + 6x + y^2 2y 15 = 0$

Question 6 Sketch the following parametrically defined curves.

(a) x = 3t - 5

y = 2t + 1

(b) x = 2t $y = t^2 - 1$

(c) x = t - 2 $y = 2t^2 + 1$

Question 7 [Trick question]

Find the Cartesian equation of the following.

(a) x = 2t + 3

y = 5

(b) x = -2 $y = t^3 + 1$ Question 8 [Importance of checking domain and range]

- (a) Find the Cartesian equation of $(t^2, t^2 1)$.
- (b) Bob claims that the graph is just the graph of y = x 1 whereas Mary claims that it is only the right-hand side of the graph. By substituting a few values of t and plotting the resultant point, determine who is correct.
- (c) Explain why they are not the same.

Question 9 Use a similar technique to Question 8 to find and sketch the Cartesian equation of the following. Remember to state any restrictions where necessary.

(a)
$$(3-t^2, 2+t^2)$$

(b)
$$(\sqrt{t-1}, t)$$

(c)
$$(2, t^2 + 1)$$

♦ Challenge Problems

Problem 1 For the following Cartesian equations, find two possible parametric representations.

(a)
$$y = 2x + 3$$

(b)
$$y = 4x^2 + 1$$

(c)
$$x^2 + y^2 = 9$$

Problem 2 [Folium of Descartes]

Consider the curve defined parametrically by

$$x = \frac{3t}{1 + t^3}$$
$$y = \frac{3t^2}{1 + t^3}$$

- (a) Show that $\frac{y}{x} = t$.
- (b) Deduce that $x^3 + y^3 = 3xy$.
- (c) Use graphing software to produce a sketch of the Folium of Descartes.

Problem 3 [Parametrisation of the ellipse]

The ellipse has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are constants. Find a suitable parametrisation for the ellipse by modifying the standard parametrisation for the circle.

Problem 4 [More advanced algebraic parametrisations] Eliminate the parameter in each of the following.

(a)
$$x = t + \frac{1}{t}$$

 $y = t^2 + \frac{1}{t^2}$

(b)
$$x = t + \frac{1}{t}$$

 $y = t - \frac{1}{t}$

Problem 5 [More advanced trigonometric parametrisations] Eliminate the parameter in each of the following.

(a)
$$x = \sec \theta$$

 $y = \tan \theta$

(b)
$$x = \cos \theta + \sin \theta$$

 $y = \cos \theta - \sin \theta$

Chapter 1 Review

Further Functions

Review

Question 1 By first drawing a graph of y = f(x), sketch a graph of $y = \frac{1}{f(x)}$.

(a)
$$f(x) = x + 1$$

(b)
$$f(x) = x^2 + 2$$

(c)
$$f(x) = x^2$$

(d)
$$f(x) = x^2 - 4$$

Question 2 By first drawing a graph of y = f(x), sketch a graph of $y^2 = f(x)$.

(a)
$$f(x) = 2x - 4$$

(b)
$$f(x) = x^2 + 1$$

(c)
$$f(x) = x^2 - 16$$

(d)
$$f(x) = 16 - x^2$$

Question 3 By first drawing a graph of y = f(x), sketch a graph of y = |f(x)|.

(a)
$$f(x) = 3x + 4$$

(b)
$$f(x) = x^2 - 16$$

(c)
$$f(x) = (x-1)(x^2-4)$$

(d)
$$f(x) = \sqrt{x} - 1$$

Question 4 By first drawing a graph of y = f(x), sketch a graph of y = f(|x|).

(a)
$$f(x) = 6 - 2x$$

(b)
$$f(x) = x^2 - 2x - 8$$

(c)
$$f(x) = x^3 - 9x$$

(d)
$$f(x) = \sqrt{x+1}$$

Question 5 By first drawing a graph of y = f(x) and y = g(x), sketch a graph of y = f(x) + g(x).

(a)
$$f(x) = x, g(x) = -\sqrt{x}$$

(b)
$$f(x) = x, g(x) = \sqrt{1 - x^2}$$

(c)
$$f(x) = x^2, g(x) = \frac{1}{x}$$

(d)
$$f(x) = \sqrt{x}, g(x) = \frac{1}{x}$$

Question 6 By first drawing a graph of y = f(x) and y = g(x), sketch a graph of y = f(x)g(x).

(a)
$$f(x) = x$$
, $g(x) = x^2 + 1$

(b)
$$f(x) = x, g(x) = \sqrt{1 - x^2}$$

(c)
$$f(x) = x^2, g(x) = \sqrt{1 - x^2}$$

(d)
$$f(x) = x^2, g(x) = 4^{-x}$$

Question 7

(a) Sketch the graph of
$$y = \sqrt{x} - 1$$
.

(b) Hence, sketch the graph of
$$y = \frac{1}{\sqrt{x} - 1}$$
.

Question 8 Solve the following inequalities.

(a)
$$x^2 \ge 25$$

(b)
$$4x > x^2$$

(c)
$$x^2 - x - 20 \le 0$$

(d)
$$12 - x - x^2 < 0$$

Question 9 Solve the following inequalities.

(a)
$$\frac{2}{x-1} \ge 3$$

(b)
$$\frac{3}{2x+1} \le -1$$

(c)
$$\frac{x}{x+1} \ge 2$$

$$(d) \quad \frac{x-1}{x+1} \le 4$$

Question 10 Solve the following inequalities.

(a)
$$|x-2| \ge 5$$

(b)
$$|2x+3| \le 9$$

(c)
$$|3 - 2x| > 7$$

$$(d) \quad \left| \frac{3x+1}{2} \right| > 5$$

Question 11 For each of the following graphs, sketch the inverse function.

(a)

(b)

(c)

(d)

(e)

(f)

Question 12 For the following functions, find the equation of $f^{-1}(x)$ and hence show that

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

(a)
$$f(x) = 5 - x$$

(b)
$$f(x) = 3x - 1$$

(c)
$$f(x) = \sqrt{x}$$

(d)
$$f(x) = \frac{1}{x-1}$$

Question 13 Let $f(x) = x^2 - 8x$.

- (a) Let $x \in [p, \infty)$ be a domain so that $f^{-1}(x)$ exists. Find the smallest value of p.
- (b) Find the equation of the inverse and hence sketch the graph of y = f(x) and $y = f^{-1}(x)$ on the same set of axes.

Question 14 Find the inverse of the following. If required, restrict the domain to contain only positive values of x.

(a)
$$y = x^2 - 6x + 14$$

(b)
$$y = x^4 - 1$$

(c)
$$y = \frac{2}{x^2}$$

(d)
$$y = \sqrt{9 - x^2}$$

Question 15

- (a) Find the domain and range of $f(x) = \frac{3}{x-2}$.
- (b) Find the equation of $f^{-1}(x)$.
- (c) What are the x-coordinates of where the graphs of y = f(x) and $y = f^{-1}(x)$ intersect?
- (d) Sketch y = f(x) and $y = f^{-1}(x)$ on the same set of axes.

Question 16 Eliminate the parameter t and hence find the Cartesian equation of the following.

(a)
$$x = 3t - 1$$
$$y = 2t + 3$$

(b)
$$x = 2t$$
$$y = t^2 - 1$$

(c)
$$x = 2at$$

 $y = at^2$

(d)
$$x = 2t - 1$$
$$y = t^2 - t$$

(e)
$$x = 2\cos\theta$$

 $y = 2\sin\theta$

(f)
$$x = 2 + 2\cos\theta$$
$$y = -3 + 2\sin\theta$$

Question 17 Write down the centre and radius of the circles defined parametrically by the following.

(a)
$$x = -2 + 5\cos\theta$$

 $y = 3 + 5\sin\theta$

(b)
$$x = 4 - 3\cos\theta$$

 $y = -1 + 3\sin\theta$

Question 18 Express the quadratic function $y = x^2 + 2x - 1$ in parametric form, given that x = 2t - 1.

Question 19 Show that the point $P\left(ap, \frac{a}{p}\right)$ is an appropriate parametrisation of $xy = a^2$.

Question 20 Draw the graph of the following by addition of ordinates.

(a)
$$y = |x| + |x - 2|$$

(b)
$$y = |x| - |x - 2|$$

🔍 Investigation Task

Further Reflections

So far, you have learned the following transformations (and their combinations), which require reflections.

$$y = -f(x), \quad y = |f(x)|$$

 $y = f(-x), \quad y = f(|x|)$

This investigation task will take further the study of reflections.

Question 1 Create a function of your choice that lies both above and below the x-axis, and call it f(x). Construct a graph of it using graphing software.

- Use graphing software to sketch |y| = f(x) on the same set of axes as y = f(x). Comment on your findings.
- (b) Write down a set of instructions for a student on how to draw |y| = f(x) for any given function.
- (c) Bob makes the following argument.

"Much like how |x| = 5 implies $x = \pm 5$, we can say that |y| = f(x) implies $y = \pm f(x)$. So, the graph of |y| = f(x) is just the positive and negative graphs on the same set of axes."

Is Bob's answer correct? If not, then is it partially correct or not-at-all correct? Give a detailed response and provide examples or counter-examples where necessary.

Suppose $f(x) = -x^2 - 1$. Draw the graph of |y| = f(x) and comment on your findings with justification. Repeat this for $f(x) = x^2 + 1$ and similarly comment on your findings.

Create a function of your choice and call it f(x). Construct a graph of it using Question 2 graphing software.

- Use graphing software to sketch y = f(4-x) on the same set of axes as y = f(x). Comment on your findings.
- Write down a detailed set of instructions for a student on how to draw y = f(a x) for any (b) given function and for various values of a.
- Explain why the graph of y = f(a x) has the effect that it does on the graph of f(x). (c)